
1

A Practitioner’s
Guide to Application
Security
The knowledge to build and improve your
AppSec program using straightforward
approaches that work

Caroline Wong
October 2018

2

Table of Contents

Introduction

Part 1: Getting Started

Part:2: Diving In

Prevent: How do we scale our efforts?

Drivers: Why?

Find: What’s wrong?

3

4

9

18

4

10

22

7

15

6

13

Application Security 101

Govern: What’s Important?

Conclusion and Key Takeaways

Talent: How?

Fix: What are we going to do about it?

3

Introduction
So you’ve been tasked with building and improving an
application security program. How do you go about it?

There are many frameworks and models that you
could use (BSIMM, CSA CCM, ISO27017, etc.) but
upon closer inspection, you might find these to be
extremely long, overly complicated, and can be
challenging to implement.

Web apps have become more complex, cloud apps are
increasingly API driven, and code is being deployed
faster and faster. The attack surface has changed and
traditional application security has evolved.

Practitioners need a straightforward runbook to guide
their application security efforts. That’s why we created
The Modern AppSec Framework.

010110101
101010011
1010010

https://www.bsimm.com/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/#_overview
https://www.iso.org/standard/43757.html

4

Part 1: Getting Started
Application Security 101

1. Govern

Fundamentally, application security is about designing,
building, and maintaining secure software. Good
software helps organizations and bad software hurts
organizations.

There are four main categories of application security
activities - Govern, Find, Fix, and Prevent.

To do application security well, you must govern the
application security program.

There are a number of high level factors to consider
when you’re thinking about application security. These
include compliance regulations, relationships with
other organizations, and having a solid understanding
of what it is you’re supposed to be securing in the first
place. It’s also important to define metrics up front so
that you can demonstrate the success of your program
over time.

5

2. Find

3. Fix

4. Prevent

To do application security well, you must find security
issues.

There are many ways to find security problems at
different points in any software development lifecycle,
whether your organization(s) follows a waterfall, agile,
or DevOps methodology. Security problems exist in
two broad categories - bugs and flaws. You can think of
bugs as code level security issues and flaws as design
level security issues.

To do application security well, you must fix security
issues.

It is not good enough to just focus on finding security
issues - the quality of software does not improve until
the problems are addressed or eliminated. Fixing
security issues requires effective communication,
coordination, and integration with development teams
and processes.

To do application security well, you must prevent
security issues from happening in the first place.

The people who build software must understand why
vulnerable code is insecure. Developers must be
empowered with tech stack specific knowledge and
tools to help them avoid creating security bugs and
flaws in the first place. Ideally, good programming

6

practices and well-designed frameworks make it easier
for developers to write secure software by default and
harder for them to make mistakes.

Cloud environments must be configured correctly in
order to prevent security vulnerabilities from being
exploited, and attacks must be discovered and stopped
as early as possible in order to minimize damage.

1. Sales / Competitive Differentiator

Maybe you’ve got a customer who insists that you
perform application security activities because by
working with you, they extend their attack surface and
change their risk profile. Your application security is
their application security. They want to maintain a
certain risk posture, and you want their business.

You may be required to discuss application security
practices as part of the sales process and provide
evidence (such as penetration test results) before
engaging in a formal business relationship.

Maybe the type of work that you do requires you to
secure your software as a competitive differentiator.
Security is a feature and promotes necessary trust with
your customers and partners. Maybe your peers and
competition are focused on application security, and if
you are not then you might risk falling behind.

Drivers: Why do you want to do application security?

7

Maybe you work in an industry that requires you to
comply with regulations, and some of those regulations
prescribe application security activities.

Examples of compliance drivers include PCI, HIPAA,
GDPR, FedRamp, and SOC2.

Maybe you (and your executives) don’t want to see your
organization’s name in the news headlines because of a
security breach. Maybe you don’t want to have to snail
mail all of your customers and tell them that their data
was compromised by malicious attackers.

A security breach might damage the trust relationship
you have with your customers and devastate your
business.

If you don’t have anyone on your team that knows
application security, how exactly are you going to get
the work done?

A holistic approach that matches application security
talent and resources with the right technology is
required to run the program. This is both a science and
an art. Each organization will have business-specific
context for different resource allocation trade-offs,
program level metrics, and KPIs.

2. Compliance

3. Avoid a Breach

Talent: How are you going to get it done?

8

It would be convenient if you could “just” buy a piece
of technology that would do everything for you.
Unfortunately, application security scanners and
firewalls can’t solve everything - their effectiveness is
directly related to the skills and manual effort of people
who must tune them to a specific environment, monitor
them regularly, and filter the signal from the noise.

Organizations need human-powered security testing.
But, it’s difficult to hire full time application security
professionals. Consultants can be very expensive and
may be unavailable for weeks or months, which doesn’t
work if you need the job done right now. Useful security
talent needs to snap into your agile development
processes and produce results that align with your
metrics and KPIs.

Today’s requirements for application security activities
include:

1. Cost that enables higher frequency testing and
greater coverage across an application portfolio

2. Access to quality security talent who can perform
manual testing on-demand

3. Strong integration with development processes and
tools in order to get security issues fixed and prevented
in the future

In short, today’s application security activities must be
agile, actionable, and cost-effective.

9

Part 2: Diving In
This next section describes several different categories
of application security activities that fall into each of
the areas of Governance, Find, Fix, and Prevent.

What’s wrong?

How do we scale
our efforts?

What are we going
to do about it?

What’s important?

Asset Management
& Risk Ranking

Compliance

Pen Testing

Automated Scans

Secure Code ReviewVendor Security

Engage

Communicate

GOVERN FIND FIX

Findings-Based
Training

Threat Modeling

Security Frameworks &
Configuration Standards

RASP & WAF

PREVENT

GOVER N

FI X

PREVEN T

FIND

Integrate

Track & ReportVulnerability DisclosureMetrics

10

Asset Management & Risk Ranking

If you want to secure your applications, the first thing
to do is to ensure you have a reasonably accurate
software inventory.

It’s difficult to properly secure a piece of software if you
don’t know it exists or if you’re not keeping track of it.
Make a list of all of your web applications, mobile
applications, APIs, and cloud applications. You also
need to have an up to date, comprehensive list of
various software components, their dependencies,
software versions, and open source.

Next, assign a risk ranking to each piece of software.
You can use criteria such as business criticality, data
type, and accessibility to group your applications.

Important and high risk applications should have more
(and perhaps different) security activities applied to
them than less important and low risk applications.

Compliance

Many organizations are subject to security
requirements because of an application’s business
function (ex. payments), type of data stored or
processed (ex. healthcare data), or geographical

Govern
What’s important?

11

location (ex. regional requirements for data privacy
and protection). Others may be required to perform
specific security activities due to contractual
obligations.

Due to compliance requirements, certain security
controls may not be optional. Find out what these are
and make sure you’re doing them to meet the
appropriate standards.

Vendor Security

I like to say that “vendor security goes both ways.”
What I mean by that is that an organization’s application
security is affected by both the requirements of their
buyers and by the risk profiles of their vendors.

An application that uses third party software
components, including open source components,
takes on the risk of potential vulnerabilities in those
dependencies. These should be identified, tracked, and
accounted for in the same way as every other software
component (as described above in Asset Management
& Risk Ranking).

If a software vendor is selling their application to a
buyer, that buyer may require specific security
activities (such as the results of a manual penetration
test, a response to a vendor security questionnaire,
or evidence of certain security policies) for the
application.

12

Metrics

Best practices in application security change and go
in and out of date very quickly. In application security,
one size doesn’t fit all. Standards and controls are
built on years of practical security experience in real
organizations – but this is something which is
constantly changing. Today, every application security
practitioner needs to know how to optimize his or her
unique program using metrics.

Like any business initiative, an application security
program should have objectives and measurements
to determine if those objectives are being met. An
example of a risk management objective for
application security is, “Reduce the probability that
attackers can cause critical applications to stop
functioning.” An example of a typical measurement
that organizations track to help measure application
security is defect density.

A security metric measures activity to provide
decision support for doing things better in the future.
This data can help to answer questions that an
executive or operator might have about a particular
area, such as penetration testing, using evidence-based
information instead of opinion or anecdotes.

It’s been said that “if you can’t measure it, you can’t
manage it.” While it turns out that Peter Drucker
never actually said that, it is indisputable that
measuring results and performance is crucial to an
organization’s effectiveness, and this definitely applies
to application security.

https://resource.cobalt.io/pen-test-metrics-2018
https://www.amazon.com/Security-Metrics-Beginners-Guide-Caroline/dp/0071744002/ref=sr_1_1?ie=UTF8&qid=1536947629&sr=8-1&keywords=security+metrics%2C+a+beginner%27s+guide

13

Pen Testing

Penetration tests (aka pen tests) are a type of
manual security testing that provides insight into an
app’s security by systematically reviewing its features
and components. This type of exercise improves
coverage of an app’s security because the test is
intended to explore the complete app rather than just
focus on one type of vuln or one particular section. Pen
tests follow methodologies related to topics like input
validation, authentication, and access controls in order
to identify flaws in the app’s implementation.

Black box testers operate with limited knowledge and
white box testers utilize as much information as they
can to inform their approach.

Pen Testing as a Service (PTaaS) provides on-demand
manual penetration testing for web applications,
mobile applications, and APIs. Findings are delivered
through a platform that integrates with developer
tracking systems like JIRA and GitHub. A SaaS platform
also facilitates collaboration between pen testers,
security team members, and development teams to
not only find but also to fix issues.

Find
What’s wrong?

https://cobalt.io/pentest

14

Automated Scans

Security scanners can be programmed to automatically
identify certain kinds of vulnerabilities.

Application security scanners come in two flavors: A
SAST scanner (“S” for “static” application security
testing) examines the source code, binary, or byte code
of an application. A DAST scanner (“D” for “dynamic”
application security testing) examines the application
from the outside when it is running.

The most interesting and important security findings
cannot be discovered via automated means alone.
Human intelligence and creativity is necessary to
discover security flaws in business logic. There are
entire classes of security issues (authentication,
session management) which cannot be discovered using
automated tools.

Secure Code Review

Code review is the manual review of one developer’s
code by another developer. It’s intended to find mistakes
and improve code quality. Similarly, secure code review
is the manual review of code by a security expert. This
is intended to find coding errors that may introduce
security vulnerabilities.

Secure code review is a manual process that often
leverages SAST technology.

15

Vulnerability Disclosure

Every so often, a security researcher that is not directly
associated with an organization will discover and report
a security vulnerability. This is called vulnerability
disclosure.

Bug bounty is a type of vulnerability disclosure program
which leverages a crowd of globally sourced
researchers in competition. In a public bug bounty,
anyone in the world can submit a potential security
vulnerability to an organization, and the first to find a
valid bug will be paid a “bounty.”

Engage

The ways in which development and operations teams
interact is changing, and security must keep pace.
Security teams working effectively with DevOps teams,
processes, and tools are absolutely critical to getting
application security done right.

Security teams sometimes place heavy emphasis on
finding issues, without enough focus on engaging
with the development teams and building the
cross-functional relationships that are actually
required to get security issues fixed.

Fix
What are we going to about it?

16

Fixing security issues is not just a technical problem;
people and process are also required to get it done.
Once you’ve performed security testing in order to find
as many issues as possible, the next step is to engage
with the teams that can actually fix the issues.

Get curious about development team priorities and
look for areas of common interest. Ask questions about
how development teams work and how much time they
have to realistically spend on fixing security issues.
Make sure you understand the business context for the
security issues you want fixed, and use this information
to prioritize fixes.

Communicate

Once you have performed security testing in order to
find as many issues as possible, the next step – by
no means a trivial one – is to communicate them to the
development team. The development team is a
critical stakeholder when it comes to prioritizing the
fixes, remediating the issues, and ideally preventing
the same issues from coming up again.

It’s easy to say that we want to fix all the security issues
that have been found, however it’s not always easy to
make it happen.

Developers are focused on building new features and
meeting deadlines, and have limited bandwidth to
remediate security issues. It is certainly not possible
to fix all the security issues at once. They must to be
prioritized in the context of business values and goals
and addressed over time.

17

Integrate

One of the best ways to get security bugs fixed is to
integrate with developer tools and processes.

Get curious about what tools developer teams use to
do their work and the processes they follow to manage
it. For example, how frequently do they release code?
This should influence the frequency of security testing.
What bug tracking system(s) are they using to manage
bug fixes? Make sure security bugs are included and
don’t get lost in separate systems or PDF reports.

Customize the application security program to the way
that your organization’s development teams work and
you’ll see the most success in getting security issues
addressed and eliminated.

Track and Report

Now that you’ve got your software inventory
(Governance: Risk Ranking) and you’ve identified some
security issues (Find: All), you’ll want to keep track of
what has been tested, by what means, and when. Keep
track of the findings from each security test and
prioritize them for fixing. Use business context to
understand which issues matter the most, and work
with development teams to fix those first.

For example, many organizations require that findings
be fixed within a certain period of time, depending on
the criticality of the findings. An e-commerce business
might require that critical findings discovered on its
customer facing applications be fixed within 48 hours,
high severity findings be fixed within 10 days,

18

medium severity findings be fixed within 30 days, and
low severity findings be fixed within 90 days.

Make sure you always know which issues are open and
which have been addressed and can be closed. Report
summary information to relevant stakeholders so
everyone is always in the know about current status.

Findings-Based Training

The best application security training for developers
is based on real security findings, whether these are
demonstrated during an actual security incident or
found in manual penetration testing.

The OWASP Top 10 contains a list of common web
application security risks, however each organization
will have its own unique top 10 list. If you know what
yours is, you can and should use this information to
prevent entire categories of security vulnerabilities
by implementing focused developer training.

Threat Modeling

There are two types of application security problems:
bugs and flaws. Bugs are code-level mistakes, and
flaws happen at the design level.

Prevent
How do we scale our efforts?

19

Threat modeling is a type of design-level security
assessment that is intended to examine the way an
application system works in order to identify potential
flaws. The process involves analyzing assets, security
controls, and threat agents in the context of an
application system.

When flaws are detected in threat modeling before
software implementation, some security problems can
be avoided.

Security Frameworks and Configuration Standards

Some security issues can be prevented by using certain
security framework and configuration standards.

A few examples include CSRF tokens (prevent Cross
Site Request Forgery attacks), CSP (whitelist assets
that the browser should allow to load and execute in
order to minimize the impact of Cross Site Scripting
exploits), and HSTS (encrypt data in transit and prevent
fallback to non-HTTPS traffic).

Other kinds of security issues can be avoided by
securely configuring the software environment, for
example by following the Amazon CIS benchmark to
harden AWS accounts and cloud services.

RASP & WAF

There are a couple of tools which are meant to protect
an application by identifying and stopping malicious
activity while the application is running.

https://guides.rubyonrails.org/security.html
https://developers.google.com/web/fundamentals/security/csp/
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet

20

A Web Application Firewall (WAF) examines web traffic
to identify and block suspicious activity, such as
comment spam, XSS, and SQL injection attacks.
Runtime Application Self-Protection (RASP) operates
in the runtime environment and can monitor, detect,
and alert in real-time.

Both WAF and RASP can be run in either “detect and
alert” or “detect, alert, and block” mode. They can be
most effective at preventing security issues when
running in “detect, alert, and block” mode, however
this requires the business to risk blocking legitimate
application activity as well as malicious activity.

As with security scanners, any automated technology
will simply do what it is programmed to do. The most
effective implementations are carefully watched and
guided by manual human effort as well.

WAF

21

The Modern AppSec Framework

What’s wrong?

How do we scale
our efforts?

What are we going
to do about it?

What’s important?

Asset Management
& Risk Ranking

Compliance

Pen Testing

Automated Scans

Secure Code ReviewVendor Security

Engage

Communicate

GOVERN FIND FIX

Findings-Based
Training

Threat Modeling

Security Frameworks &
Configuration Standards

RASP & WAF

PREVENT

GOVER N

FI X

PREVEN T

FIND

Integrate

Track & ReportVulnerability DisclosureMetrics

22

Conclusion and Key
Takeaways
It’s a great time to be in application security. The
industry talent shortage means that options exist for
professionals who possess and are developing skills in
the field. It also means that finding the right people to
help you build your application security program can
be challenging.

The people who are going to attack your software aren’t
just using technology to do it. They’re also using their
smarts, analysis, and creativity. We need on-demand
human effort to build and defend the software that
powers our organizations.

Just like any other business initiative, an application
security program takes a combination of people,
process, and technology. Tools can be useful, but they
need the right people and workflows to be effective.

Application security is very much a team effort. Security
professionals can’t do it alone - they’ve got to work in
collaboration with development teams.

We hope that you find this guide to be helpful as you
develop and improve your application security program.

23

Caroline Wong
Chief Security Strategist

Cobalt.io

Her close and practical information security knowledge
stems from broad experience as a Cigital consultant, a
Symantec product manager, and day-to-day leadership
roles at eBay and Zynga.

Caroline authored the popular textbook Security Metrics:
A Beginner’s Guide, published by McGraw-Hill in 2011.
She has been featured in the 2017 and 2018 Women in
IT Security issues of SC Magazine and was named one of
the Top Women in Cloud by CloudNOW.

Special thanks to:
Julie Kuhrt for Art Direction
Mike Shema for Technical Review
Chris Tilton for Editorial Review

https://www.linkedin.com/in/carolinewmwong/
https://cobalt.io/

